Di(phosphavinyl) Ethers (2,4-Diphospha-3-oxapentadienes)

Roxana M. Birzoi^a, Delia Bugnariu^a, Christine Goers^a, Rafael Guerrero Gimeno^a, Thorsten Gust^a, Antje Riecke^a, Zoltán Benkõ^b, László Könczöl^b, László Nyulászi^b, Cathleen Wismach^a, Peter G. Jones^a, Reinhard Schmutzler^a, Rainer Bartsch^a, and Wolf-W. du Mont^a

^a Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

 Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt Gellért tér 4, H-1521 Budapest, Hungary

Reprint requests to Prof. Dr. W.-W. du Mont. E-mail: w.du-mont@tu-bs.de

Z. Naturforsch. 2009, 64b, 73 – 82; received September 30, 2008

Dedicated to Professor Otto J. Scherer on the occasion of his 75th birthday

Hydrolytic cleavage of the P-chlorophosphaalkenes (RMe₂Si)₂C=PCl (R = Me: 1a; R = iPr: **1b**) in the presence of triethylamine leads to di(phosphavinyl) ethers (2,4-diphospha-3-oxapentadienes) [(RMe₂Si)₂C=P]₂O (2a, 2b) as main products, accompanied by alkylphosphinic acids (RMe₂Si)₂(H)CP(H)(O)OH (3a, 3b). The hydrolysis of (PhMe₂Si)₂C=PCl (1c) proceeds less selectively. Reactions with metal oxides under aprotic conditions provide 2a [impure, from 1a with (nBu₃Sn)₂O] and **2b** [from iodophosphaalkene (iPrMe₂Si)₂C=PI with Ag₂O] as oils. ¹H, ¹³C, ²⁹Si and ³¹P NMR spectra, however, allow unambiguous characterisation of **2a** and **2b**. Formation mechanisms, structure, and C=P-O π stabilisation of the oxabisphosphaalkene [(H₃Si)₂C=P]₂O (2') were studied with DFT methods. The double [2+4] cycloaddition reaction of 2a with two equivalents of cyclopentadiene leads to the phosphinous anhydride 7 as a mixture of diastereomers whereas the addition of two equivalents of tetrachloro-o-benzoquinone proceeds in a diastereoselective fashion. An X-ray crystal structure determination of the resulting oxo-bridged bis(2-phospha-2,5-dioxa-3,4benzophospholene) derivative 8 revealed the presence of a racemic mixture of (R,R)- and (S,S)configurated molecules. The solid state structure of a by-product, bisylphosphonic tetrachlorocatechol monoester (Me₃Si)₂CH-P(=O)(OH)-o-OC₆Cl₄OH 9, was also determined crystallographically.

Key words: Phosphaalkenes, Di(phosphavinyl) Ethers, Cycloaddition, X-Ray Crystallography, DFT Calculations, Heteronuclear NMR

Introduction

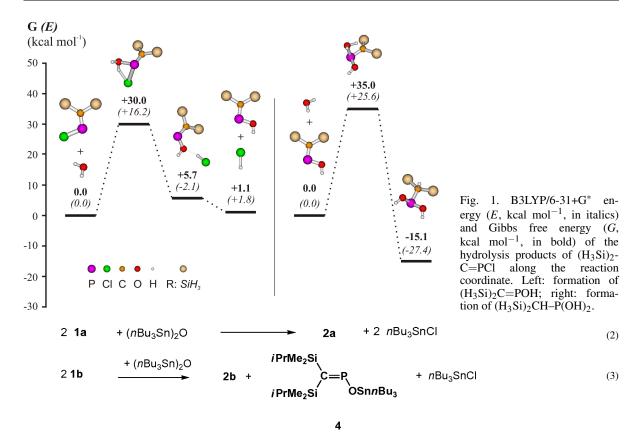
The P–O–P unit is undoubtedly the most common structural motif in phosphorus chemistry. In naturally occurring and anthropogenic phosphorus compounds, P^VOP^V systems with tetracoordinated phosphorus (such as P₄O₁₀ and oligo- or polyphosphates) are the most abundant. Higher coordination numbers (*e. g.* P^VOP^V with pentacoordinated phosphorus, *e. g.* P₄O₁₈) [1] and lower coordination numbers (P^{III}OP^{III}, *e. g.* P₄O₆ and phosphinous anhydrides) [2] have been investigated to a much lesser extent. POP systems involving two-coordinated phosphorus, however, have not appeared in the literature [3]. The only as yet characterised bis-alkylidene POP system was detected

as the central di(phosphavinyl) ether ligand ¹Bu(H)-CPOPC(H) ¹Bu of a unique tetranuclear manganese carbonyl complex, derived from the reaction of the methylcyclopentadienylmanganese carbonyl precursor with ¹BuCP, apparently in the presence of traces of moisture [4]. Formally, this product can be seen as resulting from the addition of the two O–H bonds of a water molecule, each to one PC triple bond. This elegant access to a doubly unsaturated POP ligand was, however, never reproduced with the metalfree system [3]. Recently we observed that the heavier congeners of doubly unsaturated POP systems, [(Me₃Si)₂C=P]₂S (I) and its selenium homologue, are stable compounds that react (i) with Mo(CO)₄ to give four-membered chelate complexes contain-

0932–0776 / 09 / 0100–0073 \$ 06.00 © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen \cdot http://znaturforsch.com

ing exocylic P=C bonds [5], (ii) with two equivalents of cyclopentadiene and of tetrachloro-o-benzo-quinone in double [2+4] cycloaddition reactions [5], and (iii) with elemental sulfur and selenium in a surprising fashion, different from the behaviour of comparable monofunctional phosphaalkenes [3], furnishing P_2Se_5 -related heteronorbornane structures [6]. The latter reactions – in agreement with results obtained from density functional computations [6] – suggest a certain degree of electronic communication between the π systems of the two neighbouring phosphaalkene P=C bonds via the chalcogen element.

Such delocalisation is known from Niecke's 2,3,4triphosphapentadienide anion $\{[(Me_3Si)_2C=P]_2P\}^-$ [7] (II), which is a precursor to P₃C₂ heterocycles including bicyclic systems. Its heavier 3-arsa congener $\{[(Me_3Si)_2C=P]_2As\}^-$ [7] was also characterised, but the lighter 2,4-diphospha-3-azapentadienyl anion $[(Me_3Si)_2C=P]_2N^-$ (III) and the isoelectronic 2,4diphospha-3-oxapentadiene [(Me₃Si)₂C=P]₂O (IV) are unknown. When studying reactions with Phalogenophosphaalkenes $(Me_3Si)_2C=PX$ (X = F, Cl,I) [8] for a number of synthetic purposes, we tentatively assigned a minor ³¹P NMR signal at about $+352 \ (\pm 1)$ ppm in the reaction mixtures to [(Me₃Si)₂C=P]₂O ("POP") [9] as a possible hydrolysis product. In the context of current work on related PNP ligands $[(RMe_2Si)_2C=P]_2NR$ (R = Me, *i*Pr, Ph; R' = tBu, Me₃Si) [9] that exhibit, as does "POP", ³¹P NMR resonances in the range of +350 to +360 ppm, it became necessary to undertake a synthetic study of the as yet unexplored unsaturated POP system (2,4-diphospha-3-oxapentadienes = oxabisphosphaalkenes), in order to enable the unambiguous ³¹P NMR spectroscopic discrimination of transient PNP compounds from POP hydrolysis products.


Results and Discussion

Hydrolytic approach

To suppress the formation of HCl, which would add to the P=C bond, compounds 1a [8] or 1b [10a] in THF were mixed with an excess of triethylamine before a THF solution of $Na_2SO_4 \cdot 10 H_2O$ was added at 0 °C. Removal of all volatiles followed by treatment of the residue with pentane furnished brown oils. ³¹P NMR data revealed the presence of 2a or 2b, accompanied by about 10-15% of the phosphinic acids 3a or 3b (Eq. 1). The hydrolysis of (PhMe₂Si)₂C=PCl (1c) proceeds less selectively [10b] (see Experimental Section).

The mixture 2a/3a (approx. 9:1) was subsequently used for cycloaddition reactions [11]. To avoid the formation of phosphinic acids, aprotic reaction conditions are necessary.

The hydrolysis reaction of *P*-chlorophosphaalkenes 1 was also investigated by B3LYP/6-31+G* density functional calculations. All the calculations were performed on the model compound $(H_3Si)_2C=PC1$ (1'). As the hydrolysis usually starts with the substitution of the halogen by the OH group, we assumed the formation of (H₃Si)₂C=POH (disilylmethylene phosphinous acid) in the first step. The activation barrier of this substitution reaction involving a single water molecule (Fig. 1) is quite large. It is clearly seen in the transition structure that the direct transfer of the proton from the O to the Cl atom is energetically demanding because of the formation of the strained four-membered ring. It is known, however, that the barrier of hydrolysis reactions is lowered in the presence of three or four water molecules, which enable the proton transfer via a hydrogen bonded network in the transition structure [12]. Whereas this reaction step is somewhat endothermic, the presence of the base (which then reacts with HCl) drives the formation of the product.

The addition of the second molecule of water at the double bond of $(H_3Si)_2C=POH$ produces the disilylmethylphosphonous acid $(H_3Si)_2CH=P(OH)_2$, which is a tautomer of the disilylmethylphosphinic acid 3'. The reaction is exothermic, and the activation energy of this step (26 kcal mol⁻¹) is larger than that of the first step (16 kcal mol⁻¹). The experimental finding that 3 is formed only in small amounts besides 2, is in good accordance with the substantial activation barrier of this reaction step. The formation of the bis(phosphavinyl)ether 2' in a condensation reaction is a well known reaction that needs no further evaluation.

Germoxane and stannoxane method

Hexamethyldisiloxane is unreactive towards $1\mathbf{a} - 1\mathbf{c}$. After mixing dissolved $1\mathbf{a}$ with the germoxane $(\text{Me}_2\text{GeO})_4$ the ³¹P NMR spectrum showed signals at $\delta = 344$ ppm ($1\mathbf{a}$, still about 70%), at $\delta = 352.7$ ppm (about 20%, $2\mathbf{a}$, or a closely related species) and at $\delta = 25.4$ ppm (about 10%). Separation by distillation was not successful [13].

Hexamethyldistannoxane reacts with **1a** in toluene within 1 h furnishing **2a** in *ca*. 20% yield in a selective fashion, but subsequently several ³¹P NMR signals in the chemical shift range of tri-coordinated phosphorus appear with increasing intensity. Satellite doublets indicate the existence of P–Sn bonds and of P–O–Sn and/or of P–C–Sn units. After complete consumption of **1a**, **2a** cannot be separated from the other products [11].

Liquid hexa-n-butyldistannoxane reacts in a straightforward fashion with 1a giving 2a and nBu_3SnCl (Eq. 2). This allowed measurement of the NMR data of 2a undisturbed by other phosphorus species. Separation of 2a from nBu_3 -SnCl however was not achieved since attempted distillation of 2a led to its decomposition. The related reaction of hexa-n-butyldistannoxane with 1b remained incomplete. ^{31}P and ^{119}Sn NMR spectra reveal that 1b, 2b and nBu_3SnCl are accompanied by ($iPrMe_2Si)_2C=POSn(nBu)_3$ [4; $\delta^{31}P=382.2$; $\delta^{119}Sn=98.2$; $^2J(SnP)=30.4$ Hz] (Eq. 3) [10a].

$$Me_{3}Si \qquad Me_{3}Si \qquad Me_{3}Si$$

To overcome separation problems, precipitation of the insoluble nBu₃SnF was attempted. For that purpose, (Me₃Si)₂C=PF was used as starting material for the intended exchange reaction with hexa-n-butyldistannoxane (Eq. 4) [11]. This reaction led, however, selectively and without P-F cleavage to a fluorophosphane **5** [δ^{31} P = 226.8, ${}^{1}J(PF)$ = 1075 Hz, $^{2}J(SnP) = 83.3 \text{ Hz}$] that can be considered as the product of the 1,2-addition of a stannoxane Sn-O bond to the P=C double bond. 5 is accompanied by about 5% of a second unidentified fluorophosphane species [6; $\delta^{31}P = 225.4$, ${}^{1}J(PF) = 1059$ Hz]. The ¹¹⁹Sn NMR spectrum of **5** exhibits two resonances, δ^{119} Sn = 8.5 (s) and -9.5 (d,d). The d,d pattern of the upfield ¹¹⁹Sn resonance is due to ² $J(SnP) = \pm 83.3$ Hz and to ${}^{3}J(SnF) = \pm 97.7$ Hz. The occurrence of two tin atoms in the main product 5 is also supported by the EI mass spectrum, which exhibits typical isotopic patterns for the ions $m/z = 691 \text{ [M} - 2 \text{ C}_4\text{H}_9\text{]}^+ \text{ and } 673$ $[M-C_4H_9, -C_4H_8, -F]^+$. The presence of an isomer with geminal Sn and F substituents at P can be excluded on chemical and spectroscopic grounds, but a reliable assignment of the two ¹¹⁹Sn signals of 5 ("coupling" / "non-coupling", Sn-O vs. Sn-C) is not possible [11].

Silver oxide method

Stirring a suspension of two equivalents **1b** with Ag₂O in pentane for an extended period leads to the formation of oxabisphosphaalkene **2b**. The necessary reaction time (from 1 d to several months) clearly depends greatly on the source of commercial Ag₂O. Better results were obtained with the related *P*-iodophosphaalkene (*i*PrMe₂Si)₂C=PI (Eq. 5). After separation of the precipitate and subsequent removal of all volatiles from the solution, a brown oily residue remained that consisted – according to NMR and elemental analysis – predominantly of **2b**. Reactions of **1a** – **1c** with Li₂O and with ZnO did not lead to satisfactory results [11].

$$2 (iPrMe_2Si)_2C=PI + Ag_2O \rightarrow 2b + 2 AgI$$
 (5)

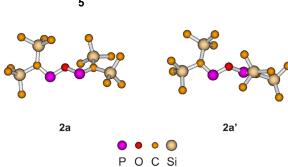


Fig. 2. Calculated structures of conformers of [(Me₃Si)₂C=P]₂O (**2a**). Bond lengths and bond angles: **2a**: P-O 1.697, P-C 1.665; P-O-P 120.5, C-P-O 107.5; **2a**': P-O 1.691, P-C 1.666; P-O-P 127.9, C-P-O 107.4.

Structure and bonding

Among the B3LYP/6-31+ G^* optimised **2a** and **2a'** structures (Fig. 2) the **2a** isomer is more stable by 1.2 kcal·mol⁻¹. In both structures the C=P-O-P=C linkage forms a W-shape with C_2 symmetry. While the corresponding structure with SiH₃ groups is planar, the trimethylsilyl substituted **2a** is nearly planar, and in **2a'** the deviation from planarity is substantial, presumably for a better steric accommodation of the bulky trimethylsilyl groups. The bond lengths and bond angles are in the usual range.

The stabilising effect of the conjugation for the SiH₃ substituted model compounds was estimated by the isodesmic reactions below (see ref. [6] for the S analogue).

The computed stabilisation energies are collected in Table 1. Reaction (6) is nearly thermoneutral for each chalcogen, showing that the stabilisation energy in the two C=P-OH fragments is nearly equal to that in the C=P-O-P=C moiety. Data for reaction (7) estimate the interaction between the C=P and chalcogen fragments, which is 30.2 kcal mol⁻¹ for oxygen, *i. e.* a remarkably high 15.1 kcal mol⁻¹ for each of the C=P-O units. In the case of **2a** the isodesmic reaction energy is somewhat reduced to 27.0 kcal mol⁻¹ (13.5 kcal mol⁻¹ for each C=P-O unit). The slight decrease can be attributed to the non-planarity of the molecule, resulting in a weaker interaction between the

Se

Table 1. Stabilisation energies of the reactions (6) and (7): $E = O, S, Se (kcal \cdot mol^{-1}).$

(6)	-1.8	0.1 (ref. [6])	-1.5
(7)	30.2	17.6 (ref. [6])	20.7
LUMO+1			8181818
LUMO			818 818
НОМО			8888
HOMO-1			8888

Fig. 3. Canonic molecular orbitals of an oxabisphosphaalkene (HF/6-31G*//B3LYP/6-31+G*).

HOMO-16

lone pair of the oxygen and the $\pi^*(C=P)$ orbitals. According to the second order perturbational analysis of the Fock matrix in the NBO basis (which estimates the energy of donor-acceptor interactions between natural orbitals) a value of 9.4 kcal mol⁻¹ was obtained for the interaction between the oxygen lone pair and each antibonding $\pi^*(C=P)$ orbital, which is comparable to that obtained using reaction (7) for 2a – see above. (It is worth noting that no other significant stabilising interaction within the CPOPC moiety was observed in this analysis). The conjugation effect can also be illustrated by the molecular orbitals of $[(H_3Si)_2C=P]_2O$ (Fig. 3), which clearly show the characteristic nodal properties of five-membered conjugated systems. The energies of

the isodesmic reactions (6) and (7) give similar results for the sulfur and selenium analogues, but the stabilisation for the oxygen analogue is higher than for the heavier chalcogens.

Cycloaddition reactions

2a reacts with two equivalents of cyclopentadiene in dichloromethane at r. t. within 24 h to form the bis-[2+4] cycloadduct **7**, accompanied by the phosphinous acid **3a** because of impurities in the starting material (Eq. 8). **7** is identified by two singlet signals in the ³¹P{¹H} NMR spectrum indicating the presence of new oxygen-bridged bis(2-phospha-norbornene) derivatives as pairs, either (i) *endo,endo* and *exo,exo* isomers of diastereochemically pure *RS/SR or RR/SS* or (ii) as *RS/SR* and *RR/SS* configurated products, existing either as *endo,endo* or as *exo,exo*-isomers [5]. Since in the case of [2+4] cycloadditions of related

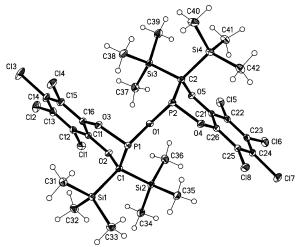


Fig. 4. The structure of compound **8** in the crystal. Ellipsoids represent 30 % probability levels. Selected bond lengths (Å), angles and torsion angles (deg): P1–O3 1.6586(10), P1–O1 1.6644(10), P1–C1 1.8271(14), P2–O4 1.6544(11), P2–O1 1.6636(10), P2–C2 1.8271(15); O3–P1–O1 99.40(5), O3–P1–C1 99.05(6), O1–P1–C1 99.77(6), O4–P2–O1 99.44(5), O4–P2–C2 99.51(6), O1–P2–C2 99.52(6), P2–O1–P1 118.81(6); C1–P1–O1–P2 –161.73(7), C2–P2–O1–P1 –164.93(7).

$$\begin{array}{c} \mathsf{Me_3Si} \\ \mathsf{Me_3Si} \\$$

thio- and selenophosphaalkenes $(Me_3Si)_2C=P-E-PR_2$ (R=tBu, iPr) with cyclopentadiene, rearrangements of the *endo*-isomers, as initially formed, into more stable *exo*-isomers occurred within 24 h [14], we assume that both diastereomers of the phosphinous anhydride 7 exist as the *exo*, *exo*-isomers [5], as depicted in Eq. 8.

The formation of the 1:2 adduct **8** from the reaction of **2a** with two equivalents of tetrachloro-*o*-benzo-quinone (TOB) [5,15] proceeds diastereoselectively (Eq. 9). In the recrystallisation of **8** the phosphinic acid **3a** (from the impure starting material) is removed.

The proposed identity and stereochemistry of the oxo-bridged bis(2-phospha-2,5-dioxa-3,4-benzophospholene) derivative **8** were confirmed by X-ray crystallography. Compound **8** (Fig. 4) crystallizes in the triclinic space group $P\bar{1}$ with Z=2 as a racemic mixture of (RR) and (SS) enantiomers with approximate C_2 symmetry (r. m. s. devation 0.07 Å).

The C1–P1–O1–P2–C2 moiety of **8** exhibits a distorted W-shaped arrangement, whereby the five atoms are approximately coplanar (mean deviation 0.14 Å). From this central backbone the benzophospholenerelated heterocycles extend in opposite directions, allowing the phosphorus atoms to minimise their lone

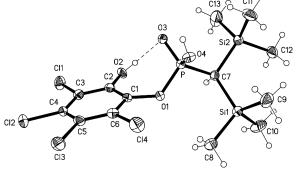


Fig. 5. The structure of the asymmetric unit of compound **9** in the crystal. Ellipsoids represent 50 % probability levels. Selected bond lengths (Å) and angles (deg): P–O3 1.5017(15), P–O4 1.5455(16), P–O1 1.6020(15), P–C7 1.763(2); O3–P–O4 113.08(8), O3–P–O1 108.40(8), O4–P–O1 106.16(8), O3–P–C7 115.49(9), O4–P–C7 109.48(9), O1–P–C7 103.36(9), C1–O1–P 126.23(13).

pair interactions in a "gauche"-type fashion. Central and endocyclic P–O distances are close to 1.66 Å, and all angles around the phosphorus atoms lie between 99 and 100°. The angle P–O–P of 118.81(6)° is significantly larger than in the analogous selenium-bridged compound [87.86(3)°] [5]. The two molecules are otherwise very similar, but the structures are not isotypic; the selenium derivative crystallizes as a chloroform solvate [5].

The packing in the crystal involves one borderline C–H···Cl contact and four Cl···Cl contacts between 3.33 and 3.61 Å, leading to a three-dimensional connectivity. The intramolecular contacts $H36A\cdots O1$ and $H37B\cdots O1$, although of narrow angle (129°) , may be structurally significant.

From the attempted reaction of **2a** with three equivalents of TOB, a bis(silyl)methylphosphonic acid

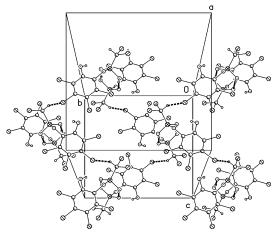


Fig. 6. Packing diagram of the dimers of compound **9**. Methyl groups are omitted for clarity. Hydrogen bonds are indicated by thicker lines (dashed for $H \cdots Cl$). View direction perpendicular to (100); region $x \approx 1/4$.

tetrachlorocatechol monoester 9 (Me₃Si)₂CH–P(=O)-(OH)-o-OC₆Cl₄OH was isolated as colourless crystals. 9 is formally related to phosphinic acid 3a by 1,4-addition of the P-H function to the quinone system [16]. Compound 9 (Fig. 5) crystallizes in the monoclinic space group C2/c with Z=8. The largest angles at phosphorus involve the formal double bond P=O3. An intramolecular hydrogen bond O2-H02···O3 is observed; the other OH function causes the molecules to associate in inversion-symmetric hydrogen-bonded dimers via bonds O4-H···O3 / O4'-H···O3. The extended packing involves three $C-H\cdots X$ contacts (X = Cl, O) and three $Cl\cdots Cl$ contacts between 3.46 and 3.61 Å. A section of the packing at $x \approx 1/4$, showing the dimers and the effect of the contact $H7 \cdots C12$, is shown in Fig. 6.

NMR spectra

Di(1-phosphavinyl) ethers 2a-2c give singlet signals in their ¹H-decoupled ³¹P NMR spectra in a narrow chemical shift range from +352 to +358 ppm. In the ¹³C and ²⁹Si NMR spectra they exhibit characteristic X parts of AA'X patterns (see Experimental Section). *cis*- and *trans*-Silyl groups give separate sets of signals.

Experimental Section

The experiments were carried out in an atmosphere of dry nitrogen gas. NMR spectra were recorded using Bruker spectrometers AC 200 and Avance 400 with SiMe $_4$ and 85 % H_3PO_4 as internal or external standards, respectively.

2,4-Diphospha-3-oxa-1,1,5,5-tetrakis(trimethylsilyl)-pentadiene (2a)

(a) Hydrolysis of Ia: To a mixture of 1.5 g (6.6 mmol) of 1a and 3.0 g (30 mmol) of triethylamine in THF (10 mL) was added dropwise a solution of 0.108 g (3.3 mmol) of $Na_2SO_4 \cdot 10$ H₂O in THF (10 mL). Subsequently all volatiles were removed under reduced pressure, the residue was treated with pentane, and solid MgSO₄ was added as a drying agent. After filtration and removal of pentane under reduced pressure a brown oil was left. A proton-coupled ^{31}P NMR spectrum shows 2a ($\delta^{31}P = 353.4$; I = 12), accompanied by less than 10% 3a, $\delta^{31}P = 25.4$ (d, d), $^{1}J(PH) = 531.3$ Hz, $^{2}J(PH)$ 19.2 Hz; I = 0.8.

2a: $C_{14}H_{36}P_2OSi_2$, $M = 394.2 \text{ g} \cdot \text{mol}^{-1}$. – Analysis: calcd. C 42.61, H 9.19; found C 41.06, H 9.05.

(b) Reaction of 1a with $(nBu_3Sn)_2O$: To 1.56 g (1.32 mmol) $(nBu_3Sn)_2O$ was added 0.59 g (2.64 mmol) 1a. The mixture turned brown immediately. Attempted separation of 2a from nBu_3SnCl by distillation led to decomposition of 2a. – ¹H NMR (400 MHz, [D₈]toluene): δ = 0.09 (s, Me₃Si), 0.06 (s, Me₃Si). – ¹³C NMR (101 MHz, [D₈]toluene): δ = 1.9 (pseudo-t, X part of AA'X, N = 7.1 Hz CH₃Si), 2.6 (s, CH₃Si), 171.5 (four lines, X part of an AA'X system, N = 31.9 Hz; distance of outer lines N = 76.8 Hz, C=P). – ²⁹Si NMR (38.8 MHz, [D₈]toluene): δ = -0.8 (pseudo-t, X part of AA'X, N = 3.5 Hz, CH₃Si), -6.1 (pseudo-t, X part of an AA'X system, N = 20.7 Hz, CH₃Si). – ³¹P{¹H} NMR (81.0 MHz, [D₈]toluene): δ = 352.7 (s).

2,4-Diphospha-3-oxa-1,1,5,5-tetrakis(i-propyldimethylsilyl)pentadiene (2b)

(a) Hydrolysis of **1b**: To a mixture of 1.6 g (6 mmol) **1b** and 2.52 g (25 mmol) of triethylamine in THF (10 mL) was added dropwise a solution of 0.99 g (3 mmol) of Na₂SO₄ · 10 H₂O in THF (10 mL). After 12 h stirring at r. t. all volatiles were removed under reduced pressure, and the residue was treated with pentane. After filtration and removal of pentane under reduced pressure a brown oil was left. A proton-coupled ³¹P NMR spectrum shows that **2a** (δ ³¹P = 352.43) was accompanied by bis(*iso*propyldimethylsilyl)methylphosphinic acid **3b** (*i*PrMe₂Si)₂CHPH(=O)(OH) (δ ³¹P = 31.3).

(b) Reaction of (iPrMe₂Si)₂C=PI with Ag₂O: To a solution of (iPrMe₂Si)₂C=PCl (1.20 g, 4.28 mmol) in THF (5 mL) was added Me₃SiI (0.86 g, 4.28 mmol) at r. t. After 3 h of stirring, the ³¹P NMR spectrum of the solution showed the quantitative formation of (iPrMe₂Si)₂C=PI (δ = 358.2 ppm). The resulting Me₃SiCl and the solvent were removed *in vacuo*, and the residue was dissolved in THF (10 mL). To the solution of (iPrMe₂Si)₂C=PI was added Ag₂O (0.5 g, 2.14 mmol) at r. t. After 3 d of stirring at r. t.

AgI was removed by filtration. After the removal of the solvent, the crude product of **2b** was obtained as an yellow oil. Yield: 0.94 g (86%). Analysis: C₂₂H₅₂OP₂Si₄ (506.94): calcd. C 52.12, H 10.34; found C 52.06, H 10.46.

2b: ¹H NMR (300.1 MHz, [D₆]benzene) δ = 0.00 ppm (s, broad, C H_3), 0.78 – 0.82 ppm (m, CH(C H_3)₂), 1.13 – 1.25 ppm (m CH(C H_3)₂). – ¹³C NMR (75.47 MHz, [D₆]benzene): δ = -2.19 ppm (pseudo-t, X part of AA'X, N = 18 Hz, (C H_3)₂iPrSi), -1.80 ppm (pseudo-t, X part of AA'X, N = 3.08 Hz, (C H_3)₂iPrSi), 14.07 ppm (pseudo-t, X part of AA'X, N = 8 Hz, CH(C H_3)₂), 14.77 ppm (pseudo-t, X part of AA'X, N = 3.76 Hz, CH(C H_3)₂), 17.53 ppm (s, CH(C H_3)₂), 17.65 ppm (s, CH(C H_3)₂), 166.27 ppm (six lines, X part of AA'X, distances of outer lines N = 168.86 Hz, C=P). – ²⁹Si NMR (59.6 MHz, [D₆]benzene): δ = -1.54 ppm (pseudo-t, X part of AA'X, N = 6.12 Hz, iPr(C H_3)₂Si); -0.24 (pseudo-t, X part of AA'X, N = 35.87 Hz, iPr(C H_3)₂Si). – ³¹P{¹H} NMR (121.5 MHz, [D₆]benzene): δ = 352.8 ppm (s).

(c) Reaction of **1b** with $(nBu_3Sn)_2O$: To 2.29 g (3 mmol) of $(nBu_3Sn)_2O$ was added 1.68 g (6 mmol) of **1b**. The mixture turned brown. Attempted separation of **2b** from nBu_3SnCl by distillation (75 °C / 0.2 mbar) led to its decomposition.

2b: ${}^{31}P\{{}^{1}H\}$ NMR (121.5 MHz, [D₆]benzene): $\delta = 352.6$ ppm (s).

4: $\delta^{31}P = 382.2$ (s), ${}^2J({}^{(119}Sn, {}^{31}P) = \pm 30.4$ Hz. $-\delta^{119}Sn = 98.2$ [d, ${}^2J({}^{(119}Sn, {}^{31}P) = \pm 30.4$ Hz].

Hydrolysis of 1c

To a mixture of 2.09 g (6 mmol) (PhMe₂Si)₂C=PCl (**1c**) and 2.52 g (25 mmol) triethylamine in THF (10 mL) was added 0.99 g (3 mmol) Na₂SO₄ · 10 H₂O in THF (10 mL). A ³¹P NMR spectrum taken after 5 d at r. t. indicated that only a very small amount of 2,4-diphospha-3-oxa-1,1,5,5-tetrakis-[(dimethyl)phenylsilyl)]pentadiene (**2c**, δ = 358.7 ppm) accompanied the starting material **1c**. Upon heating the reaction mixture, the ³¹P NMR signals of **1c** disappeared in favour of a number of signals in the shift range of tetracoordinated phosphorus, and only a small amount of **2c** was present in the mixture. Another experiment with (nBu₃Sn)₂O led also to only small amounts of **2c** in a mixture with tetracoordinated phosphorus species. Attempted isolation of **2c** by distillation led to its decomposition.

Reaction of 2a with cyclopentadiene

To 0.36 g (0.91 mmol) of **2a**, prepared by method (a), in dichloromethane was added 5 mL of cyclopentadiene (excess). Following the ensuing reaction by ³¹P NMR spectroscopy allowed the detection of two species of 2-oxo-bis(2-phosphabicyclo[2.2.1]hept-5-ene) **7** with a 1:1 intensity ra-

tio, accompanied by unconsumed **3a**. – ³¹P NMR (81.0 MHz, [D₆]benzene): δ = 65.5 (s) **7** isomer #1; 62.7 (s) **7** isomer #2.

Formation of 8 by reaction of 2a with tetrachloro-o-benzoquinone (TOB)

To 0.93 g (2.35 mmol) of 2a, prepared by method (a), in pentane (15 mL) was added 1.14 g (4.7 mmol) of TOB in one portion. After the addition a pale brown solid product precipitated from the mixture. After 2 h at r.t. the residue was isolated by filtration, washed with small amounts of pentane and dried in vacuo. Recrystallisation from dichloromethane at -20 °C gave 1.6 g (78%) **8** as colourless crystals, m.p. 171 °C. – ¹H NMR (400 MHz, CDCl₃): δ = 0.01 (s, Me₃Si), 0.13 (s, Me₃Si). – ¹³C NMR (101 MHz, CDCl₃): δ = 0.17 (pseudo-t, X part of AA'X, distance of outer lines N =5.0 Hz CH₃Si), -1.1 (pseudo-t, X part of AA'X, distance of outer lines N = 6.3 Hz CH_3Si), 2.6 (s, CH_3Si); the resonances of quaternary and aromatic 13C nuclei of 8 were not detected because of an insufficient signal-to-noise ratio. – ³¹P NMR (CDCl₃, [D₈]toluene): δ = 160.1 (s). – MS (CI, NH₃, 150 °C): $m/z = 887 [(M+1)^+]$. – Analysis C₂₆H₃₆Cl₈O₅Si₄P₂ (881.47): calcd. C 35.23, H 4.09, Cl 31.99; found C 33.50, H 4.18, Cl 31.56.

Bis(trimethylsilyl)methylphosphonic acid mono-ortho-(2,3,4,5-tetrachloro-6-hydroxyphenyl) ester **9**

After addition of three equivalents of TOB to 3 mmol of impure **2a** in a procedure similar to the synthesis of **8**, a solid formed that was separated from the red pentane solution (35 mL) by filtration. The ³¹P NMR spectrum of the solid dissolved in toluene showed a transient ³¹P NMR signal at $\delta = 57$ (²*J* (PH) 26.7) that lost intensity in favour of the persistent signal of **9**, $\delta = 44.5$ (²*J* (PH) 28.2). Crystallisation from dichloromethane at -20 °C provided a few single crystals, m. p. 187 °C. - ¹H NMR (400 MHz, [D₈]toluene): $\delta = 0.19$ (s, Me₃Si), 0.91 (d, H–C–P, ²*J* (PH) 28.2), 9.9 (br., H–O). - ³¹P{¹H} NMR ([D₈]toluene): $\delta = 44.5$ (d, ²*J* (PH) 28.2). – MS (CI, NH₃, 150 °C) m/z = 470 [M]⁺. – Analysis C₁₃H₂₁Cl₄O₄PSi₂ (881.47): calcd. C 33.20, H 4.50, Cl 30.16; found C 34.82, H 4.48, Cl 30.34.

X-Ray structure determinations

Data were recorded using MoK_{α} radiation (λ = 0.71073 Å) on a Bruker SMART 1000 CCD diffractometer. Structures were refined using the program SHELXL-97 [17]. Methyl groups were refined as idealised rigid groups allowed to rotate but not to tip; OH hydrogen atoms were refined freely but with an O–H distance restraint; other hydrogen atoms were refined using a riding model.

CCDC 707741 (8) and 707742 (9) contain the supplementary crystallographic data for this paper. These data can

be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/

Crystal data for 8: C₂₆H₃₆Cl₈O₅P₂Si₄, $M_{\rm r}$ = 886.45, triclinic, space group $P\bar{1}$, a = 10.9978(10), b = 13.5384(12), c = 14.5595(14) Å, α = 106.195(3), β = 100.083(3), γ = 102.311(3)°, V = 1969.3(3) ų, Z = 2, $\rho_{\rm calc}$ = 1.495 Mg m⁻³, $\mu({\rm Mo}K_{\alpha})$ = 0.81 mm⁻¹, F(000) = 908 e, T = 133 K; colourless prism 0.23 × 0.16 × 0.16 mm³. Of 32596 reflections collected to 2 θ = 61°, 11939 were independent ($R_{\rm int}$ = 0.042). Final R1 = 0.0314 [I \geq 2 $\sigma(I$)], w2 = 0.0765 (all data) for 418 parameters; S = 0.94, max. $\Delta \rho$ = 0.53 e Å⁻³.

Crystal data for 9: $C_{13}H_{21}Cl_4O_4PSi_2$, $M_r = 470.25$, mono clinic, space group C2/c, a = 25.210(3), b = 13.3980(16), c = 12.6721(16) Å, $\beta = 105.207(3)^\circ$, V = 4130.3(9) Å³, Z = 8, $\rho_{calc} = 1.512$ mg/m³, $\mu(MoK_\alpha) = 0.78$ mm⁻¹, F(000) = 1936 e, T = 133 K; colourless tablet $0.26 \times 0.16 \times 0.07$ mm³. Of 18216 reflections collected to $2\theta = 52.7^\circ$, 4226 were independent ($R_{int} = 0.044$). Final R1 = 1.0044

0.0308 [$I \ge 2\sigma(I)$], wR2 = 0.0819 (all data) for 231 parameters; S = 1.02, max. $\Delta \rho = 0.55$ e Å $^{-3}$.

Computational details

All the calculations were carried out using the GAUSSIAN 03 suite of programmes [18]. The B3LYP/6-31+G* [19] level of theory was used for optimisation of the geometries. For all the optimised structures vibrational analysis was performed (at the same level) to check the nature of the stationary point (at a minimum all the eigenvalues of the Hessian matrix are positive, in the transition states there is exactly one negative eigenvalue). In the case of transition states IRC (intrinsic reaction coordinate) calculations were performed to check which minima are connected by the transition state. The molecular orbitals were calculated at the HF/6-31G*//B3LYP/6-31 G* level of theory. For the natural orbital calculations the NBO 5.0 [20] code was applied. The molecules and orbitals were visualised by the program MOLDEN [21].

- [1] A. Dimitrov, B. Ziemer, W.-D. Hunnius, M. Meisel, Angew. Chem. 2003, 115, 2588-2590; Angew. Chem. Int. Ed. 2003, 47, 6814-6816.
- [2] a) V.L. Foss, Y.A. Veits, V.A. Solodenko, I.F. Lutsenko, Zh. Obshch. Khim. 1976, 46, 46–47;
 b) B. Hoge, B. Kurscheid, Angew. Chem. 2008, 120, 6920–6922; Angew. Chem. Int. Ed. 2008, 47, 6814–6816.
- [3] a) R. Appel in Multiple Bonds and Low Coordination in Phosphorus Chemistry, (Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart 1990, pp. 157-214;
 b) K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon Copy, J. Wiley, Chichester, 1998, pp. 88-127.
- [4] M. L. Ziegler, R. Balles, B. Nuber, G. Becker, H. Schmidt, B. Kanellakopulos, B. Kowietzka, *Angew. Chem.* **1987**, *99*, 929–930; *Angew. Chem., Int. Ed. Engl. 26* **1987**, *9*, 900–901.
- [5] a) W.-W. du Mont, G. Dobreva, W. Grahn, S. Vollbrecht, T. Gust, J. Mahnke, 15th Int. Conf. on Phosphorus Chemistry, Sendai, 2001, Abstract in Phosphorus, Sulfur, Silicon Rel. Elem. 2002, 177, 1753;
 b) T. Gust, W.-W. du Mont, R. Schmutzler, C. G. Hrib, C. Wismach, P.G. Jones, Phosphorus, Sulfur, Silicon Rel. Elem. 2008, 183, in print.
- [6] W.-W. du Mont, T. Gust, J. Mahnke, R. M. Birzoi, L. Barra, D. Bugnariu, F. Ruthe, C. Wismach, P. G. Jones, K. Karaghiosoff, L. Nyulászi, Z. Benkõ, Angew. Chem. 2007, 119, 8836 – 8839; Angew. Chem. Int. Ed. 2007, 46, 8682 – 8685.
- [7] a) V. Thelen, D. Schmidt, M. Nieger, E. Niecke, W.-W. Schoeller, *Angew. Chem.* 1996, 108, 354 356; *Angew.*

- Chem., Int. Ed. Engl. 1996, 35, 313–315; b) A. A. Rozhenko, W. W. Schoeller, Ph. D. Seminar on Phosphorus Chemistry, Bonn (Germany), March 2005, Abstract B3.
- [8] a) R. Appel, A. Westerhaus, Angew. Chem. 1980, 92, 578; Angew. Chem., Int. Ed. Engl. 1980, 7, 556-557;
 b) R. Appel, A. Westerhaus, Tetrahedron Lett. 1981, 22, 2159-2160;
 c) R. Appel, J. Peters, A. Westerhaus, Tetrahedron Lett. 1981, 22, 4957-4960.
- [9] a) R. M. Birzoi, D. Bugnariu, R. Guerrero Gimeno, D. Lungu, A. Riecke, V. Zota, C. Daniliuc, P. G. Jones, Z. Benkõ, L. Nyulászi, R. Bartsch, W.-W. du Mont, E. Niecke, 2008, to be submitted; b) R. Guerrero Gimeno, Dissertation, Technische Universität Braunschweig, Braunschweig, 2008.
- [10] a) D. Bugnariu, Dissertation, Technische Universität Braunschweig, Braunschweig, 2007; b) A. Riecke, Diplomarbeit, Technische Universität Braunschweig, Braunschweig, 2007.
- [11] T. Gust, Dissertation, Technische Universität Braunschweig, Braunschweig, 2003.
- [12] M. Cypryk, Y. Apeloig, Organometallics 2002, 21, 2165-2175.
- [13] C. Goers, Diplomarbeit, Technische Universität Braunschweig, Braunschweig, 2007.
- [14] a) J. Mahnke, A. Zanin, W.-W. du Mont, F. Ruthe, P. G. Jones, Z. Anorg. Allg. Chem. 1998, 624, 1447 – 1454; b) J. Mahnke, Dissertation, Technische Universität Braunschweig, Braunschweig, 2000.
- [15] a) F.H. Osman, F.A. El-Samahy, *Chem. Rev.* 2002, 102, 629-677; b) T.A. van der Knaap, F. Bickelhaupt, *Phosphorus, Sulfur, Silicon Rel. Elem.* 1983,

- 18, 47–50; c) T. A. van der Knaap, F. Bickelhaupt, *Tetrahedron* 1983, 39, 3189–3196; d) A. Vollbrecht, I. Neda, P. G. Jones, R. Schmutzler, *Phosphorus, Sulfur, Silicon Rel. Elem.* 1995, 107, 69–78.
- [16] a) M. Well, A. Fischer, P.G. Jones, R. Schmutzler, *Phosphorus, Sulfur, Silicon Rel. Elem.* 1992, 71, 143 156; b) I. Shevchenko, V. Andrushko, E. Lork, G.-V. Röschenthaler, *Eur. J. Inorg. Chem.* 2007, 259 262.
- [17] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112– 122.
- [18] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
- P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03 (revision C.02), Gaussian, Inc., Wallingford, CT (USA) **2004**.
- [19] a) C. W. Bird, Tetrahedron 1985, 41, 1409-1414;
 b) C. W. Bird, Tetrahedron 1986, 42, 89-92.
- [20] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, University of Wisconsin, Madison, W. I., 2001.
- [21] G. Schaftenaar, J. H. Noordik, MOLDEN, a pre- and post-processing program for molecular and electronic structures; see: *J. Comput. Aided Mol. Des.* 2000, 14, 123-134.